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The average density of zeros Ibr monic generalized polynomials, P,{-)= ~[J(-_)+ 
~-~ ic~./'~(-_), with real holomorphic ~[J, ,I~ and real Gaussian coellicients is 
expressed in terms of correlation functions of the values of the polynomial and 
its derivative. We obtain compact expressions for both the regular component 
(generated by the complex rootsl and the singular one (real roots) of the 
average density of roots. The density of the regular component goes to zero in 
the vicinity of the real axis like lira --I. We present the low- and I~igh-disorder 
asymptotic behaviors. Then we partictdarize to the large-n limit of the average 
density of complex roots of monic algebraic polynomials of the tbrm P,( - )= 
-"+Z'~_ ~ck --''-k with real independent, identically distributed Gaussian coef- 
Iicients having zero mean and dispersion ~ = I/,,//~. The average density tends 
to a simple, universal function of 4 = 2 n  log I-I and ), in the domain 

coth(r <~ n Jsin arg(_-)J, where nearly all the roots are located (br large n. 

KEY WORDS: Random polynomials: density of roots; universal asymptotic 
behavior. 

1. I N T R O D U C T I O N  

Let P ,  be a (monic)  algebraic polynomial  of  degree n, 

P, , ( z )=z"  + a : z " - I  + . . .  + a ,  (1.1) 
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The roots of P,, are (algebraic) functions of its coefficients a~, a2 ..... a,,. If 
the coefficients are random variables, then the roots of the polynomial will 
also be random variables. The study of the distribution of the roots of 
random polynomials began with the investigation by Bloch and Polya, ~ 
continued by Littlewood and Offord, ~2'31 Kac, ~4~ and many others (for 
reviews see refs. 5 and 6), of the number and distribution law of the real 
roots of random polynomials with real coefficients. 

Most investigations of the distribution of zeros for random algebraic 
polynomials have dealt either with the initial problem-- the real zeros of 
real polynomials--or  with the complex zeros of complex polynomials. In 
the latter case one is helped by the fact that it is possible to transform the 
joint distribution function of the coefficients into the joint distribution func- 
tion of the roots explicitly using the relations between the coefficients of an 
algebraic polynomial and its roots. 7 The average distribution of roots for 
homogeneous algebraic polynomials, 

n - -  I 

e, ,_,(z)  = ~ cizJ 
.i = o 

with real normal Gaussian coefficients cj was recently investigated by 
Shepp and VanderbeiJ "~" 8 They obtain a generalized Kac-Rice formula 
for the density of complex roots and explore its large-n limit. The fraction 
of the expected number of roots contained in an angular sector S(Ot, 02) 
which does not intersect the real axis 9 tends to 102- 0~ ]/2n. Most roots are 
concentrated in a small annulus (with width ~ n  - t )  near the unit circle. 
.~4~(R), the expected number of roots in a ball of radius R, satisfies 

lim -ol ~r(e.,./_,,, ) _ _ _ 1  1 (1.2) 

In a recent preprint by Ibragimov and Zeitouni this result is generalized to 
coefficient distributions belonging to the domain of attraction of an 
s-stable lawJ t21 

In this paper we study the distribution of the roots for more general 
random polynomials with real coefficients. The initial motivation for the 
present work was given by some interesting properties of the roots of 

7 Which follow by comparing the polynomial P, , lz)=Z~=0 a k z  " - k  with its roots expansion 
P, , (z )  = a o  IT j=  i ( z - z ~ ) .  The Jacobi determinant for this transformation was computed by 
Girschick and Hammersley? 7 9~ 
We thank an anonymous referee for bringing this paper to our attention. 
The analogous result for complex coefficients was obtained by Shparo and Shur. ~j~ 
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the Szeg6 orthogonal  polynomials ~31 related to the Wiener transfer func- 
tion. t~4~ Szeg6 polynomials are orthogonal polynomials in the nonnegative 
measure on the unit circle of the complex plane dll(O) generated by a non- 
negative T6plitz form T(k-  l), k, l = 0, 1 ..... Here 

f 
~r 

T(k) = d#(0) e -ik" (1.3) 

are the measure's moments. In the case of the Wiener transfer function the 
moments  are equal to the autocorrelation function of a discrete, finite, real 
signal sample (X(p) = O; p < 0 or p >t N): 

N - I  

T(k)=FN(k)--= ~ X(p) J((p+k) (1.4) 
p = 0 

Let the signal be the sum of a useful signal, consisting of several harmonic 
components with frequencies co,,, and noise. Then there is strong numerical 
and some analytic evidence that for signal-to-noise ratios that are not too 
low, the roots of the Szeg6 polynomials of order n with 1 ,~ n,~ N break 
into two groups. The first one converges rapidly to the unit circle at the 
points ei'"". ~5 ~7~ The other group, which also converges to the unit circle, 
but more slowly, is nearly equispaced--resembling a one-dimensional 
crystal. It has universal statistical properties even when the harmonic com- 
ponents of the signal are absent} ~8" 19~ 

If the useful signal is absent, the Szeg6 polynomial of order n is well 
approximated by (1.1) with ak=N-U'-ck with approximately Gaussian 
coefficients c~ if 1 ~ n  ~ N .  ~81 In the presence of a useful signal, the poly- 
nomials have a more complicated form, which can be obtained by sub- 
stituting more general polynomials for the monomials  z k in (1.1). Thus we 
are led to considering generalized random polynomials. 

Let 

(~(z),fk(z), k = l , 2  ..... n, n ~ N  (1.5) 

be holomorphic and linearly independent functions of the complex variable 
z in a domain of the complex plane, z = x + i y ~ D c  C. Let e(co) be a 
random n-dimensional vector with components  ck(oa), k = 1, 2 ..... n, n e N. 
Here co ~ g2, where Q is a probability space. 

We define random generalized monic polynomials of degree n by 

P,(z)=q}(z)+ ~ ckfk(z) (1.6) 
I <~k <~n 
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Homogeneous polynomials (of degree n - 1 ) correspond to setting ~b - 0. 
Alternatively, a monic polynomial of degree 17 can be regarded as a 
homogeneous one, having a singular distribution for the coefficient 
c , ,+~[3 (c , ,+ l - l ) ] .  Setting $ ( z ) = z " , f k ( z ) = z ' - k , k = l , 2  ..... n ~ ,  we 
obtain the random monic algebraic polynomials (1.1). Trigonometric, 
hyperbolic, and other types of random polynomials ~5~ can be obtained by 
suitably defining $ and J~. In the following we will often omit the qualifier 
generalized and call the objects defined by Eq. (1.6) simply polynomials. 

Let us note that any nonrandom affine transformation of the random 
vector of the coefficients 

ck --* ak + ~ Kk,,,g,,, (1.7) 

where a is a constant vector and K a nonsingular matrix, transforms the 
polynomial P ,  into one of the same form (1.6), but with the basis set (1.5) 
replaced by 

+ Z a,,,f,,,; / ,  = E K,,,ks (1.8) 
I l l  m 

Thus, by redefining the basis set, we can always consider that the mathe- 
matical expectation of the polynomial is equal to its deterministic part, ~b. 

Let F(z;co) be a random holomorphic function of z E D c C ,  i.e., a 
family of functions F(z;co) indexed by coeQ which are almost surely 
holomorphic for z in the domain D. Let 

z,.(co):x,.(co) + iy,.(co), r :  l .... 

be the solutions of the equation 

(1.9) 

F(z; co)=0 (1.10) 

The zeros of F are random variables. In each compact subdomain D~ c D 
there may be only a finite number N(D~;co) of zeros for each realization 
co ~ ~2, since the accumulation points of zeros cannot lie inside the domain 
of holomorphy. 

The density of zeros of the random function F is the random distribu- 
tion on R2: 

p(x, y; co) = ~ 6(x - x,.(w)) 6(y - y,.(w)) 
r 

= Y___ ~ c " ( z -  z,.(co)) 
r 

(1.11) 
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where 6 and 6 ~2~ are, respectively, the Dirac distributions on R and on ~2. 
Using the definition of the Dirac 6, we may rewrite (1.11) as 

p(x, y; ~o) = IF(z; c~ 2 6'2~(F(--; ~))  (1.12) 

where the Cauchy-Riemann conditions were used to calculate the 
Jacobian. The compact notation 

dF 
F = - -  (1.13) 

d: 

for the derivative of F will be used throughout this paper. 
The expected (average) density of zeros of F is obtained by averaging 

over the realizations 

~ ( x ,  3') = E{p(x ,  y; o)} (1.14) 

In a similar way, one may define the two-point correlation function of the 
zeros by 

~,_(xl, YJ; X2, 3'2)= E{P(Xl,  )'l; ~ ) P(X2, 3'2; '~)} (1.15) 

and higher, m-point, correlation functions for the roots. 
Substituting (1.12) into (1.14) and introducing the joint distribution 

function of the values of the function and its derivative at the point 
z = x +  0, 

:~ (~ , s  ,, ) )6(z ' (~-f l ' (z;  ,~))} (1.16) 

we see that the average density of roots at the point z = x + 0' is given by 
the Kac-Rice ~4" 5.2o~ formula 

~(.-,-, y ) =  E{ It'(z; )1" 6(Zt(F(:; ':~ ))}  

= [ lal -~ ~ ( o ,  ~; :)  d(2)~ (1.17) 
J 

in terms of ~(~,  ~; z). Similar formulas, involving only the joint distribu- 
tion function,of the values of the function and its derivative at the selected 
points, may be written for the m-point correlation functions of the roots 
such as (1.15). We will study the average distribution of roots, Eq. (1.14), 
in the case when F(z, co) is a generalized random polynomial, (1.6), with 
Gaussian coefficients. 

If the components of c(co) in (1.6) are Gaussian (real or complex) 
random variables, the joint distribution function of the values of the 
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polynomial and its derivative at some point z, (1.16), will also be also a 
Gaussian distribution which is determined by the correlation functions 
(covariance matrix) of the values of the polynomial and its derivative at 
that point. This means that we may compute explicitly the integral in 
Eq. (1.17) for the average density of roots in the Gaussian case and the 
corresponding expressions for the m-point correlation functions of the 
roots. 

In Section 3 we obtain the average density of roots, Eq. (1.14), for real 
Gaussian generalized monic polynomials, when the basis functions in (1.5) 
are of real type 

[~b(z)]* =~(z*), [./;~.(z)]* =A(z*) (1.18) 

Here the asterisk denotes complex conjugation. The coefficients c/, are inde- 
pendent, identically distributed (iid) real Gaussian random variables with 
zero expectation value. The assumption of a joint Gaussian distribution is 
important, while the restriction to the iid case is inconsequential. Indeed, 
by a suitable linear mapping of type (1.7) any finite Gaussian distribution 
may be mapped onto the standard one (iid with zero average and unit 
dispersion). By the above remark this leads to a redefinition (1.8) of the 
basis set. 

We will obtain a general formula giving the expected density of 
complex roots at points with Im(z):~0. Due to the reality condition, 
(1.18), there is also a singular component of the expected density of roots 
located on the real axis. We will obtain a generalization of the Kac-Rice 
formula for it. For homogeneous polynomials with noncentral Gaussian 
distributed coefficients we recover a result by Edelman and Kostlan, ~6~ who 
also pointed out that taking a singular correlation matrix limit for that case 
will yield the density of real roots in the monic case. We will show that the 
density of complex roots tends to zero like Jim(z)[, in the vicinity of the 
real axis. In the high-randomness limit (large dispersion 6 of the Gaussian 
distribution) the expected density of roots for monic polynomials obviously 
approaches that for the homogeneous ones (q~-0). In the weak-random- 
ness limit, when the dispersion (5 goes to zero, the roots concentrate near 
the zeros of the deterministic part ~b. Near simple zeros of ~b the distribution 
tends to a Gaussian one. Near zeros of ~b with multiplicity k >  1 it has 
generically 2k maxima at a distance ~ 6  ~/k ask from the zero's position. An 
interesting situation arises when the multiplicity of the zero is large. 

Since only the joint distribution function of the polynomial and its 
derivative is assumed to be Gaussian, the results of Section III could also 
be relevant to cases when the coefficients are non-Gaussian but one may 
prove a limit theorem for the joint distribution function. 
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In Section 4 we apply the general results of Section 3 to the density of 
roots of monic algebraic random polynomials, (1.1), with lid coefficients 
having a real Gaussian distribution with zero average and dispersion 

= N -  ~/-~ in the large-n, N limit. In this case the deterministic part has a 
real zero of multiplicity 17 at the origin. As mentioned above, in ref. 18 the 
Szeg6 polynomials associated to the Wiener transfer function for pure noise 
were shown to have this form if the sample length is N ~ n ~ 1. 

Defining a new rescaled coordinate ~ = 2nln Iz[ and rescaling also the 
dispersion, fi-t  = N = n2, we obtain a simple asymptotic expression for the 
average density of roots valid for large n at points which satisfy 

coth ~,~n lsin arg(z)] (1.19) 

This is a small neighborhood of the unit circle which does not intersect the 
real axis and it contains nearly all the zeros. To leading order, the average 
density in this domain does not depend on arg(z). It approaches n -~ times 
a universal function of ~ and 2. For sin 0 ~ 0, 

lim l~(er 1 d {(~ 1 ) [ ~ , ] }  
. . . . .  n- ~d~ e r 1 exp - 2 ~  (1.20) 

In the case of homogeneous polynomials, which corresponds to i = 0, 
(1.20) is equivalent to (1.2), the result of Shepp and Vanderbei. t to~ 

We finally remark that the asymptotic distribution of complex roots 
for polynomials with real Gaussian coefficients, (1.20), which do not have 
the rotational symmetry of the polynomials with complex coefficients, 
nevertheless coincides with the rotationally invariant one for the latter, 
which can be readily obtained using the methods we use. For the complex 
homogeneous case ( 2 = 0 )  the asymptotic estimate (1.2) is due to 
Arnold/-,t. 51 

Part of the calculations for the algebraic polynomials will be presented 
in more detail in the Appendix. Before proceeding further, we define in the 
next section some notations that will allow us to write in a compact way 
the joint distribution function (1.16) and our results when the random 
function is a polynomial with Gaussian coefficients. 

6 

2. A D I G R E S S I O N  O N  N O T A T I O N S  

For any holomorphic function 17, we will write 

dh=l~ (2.1) 
dz 
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tbr its derivative. The real and imaginary parts of a complex number or 
function h will be denoted by the subscripts 1 and 2 respectively. 

Ill = Re(h), h 2 = Ira(h) (2.2) 

As remarked in the Introduction, for a given realization the coef- 
ficients define a point in ~", while the basis set of functions, q5 and ./[~, 
k = 1 ..... 17, maps C ~ R 2 in C • C" ~ I~ 2 • ~2". The values of the polynomial 
P,,(z), Eq. (1.6), and its derivative P,,(z) are affine mappings (with complex 
coefficients) of the real n-vector of the coefficients into C ~ R 2. Let us 
introduce more compact notations for the various vector structures we are 
dealing with. 

We will use the same lowercase Greek letter (e.g., ~b) for both the com- 
plex scalar q5 E C and the real 2-vector ~ whose components  (q5 I, ~b2)~ ~2 
are the real and imaginary parts of the complex scalar ~b. 

Boldface letters denote real n-vectors ~"~  f =  (./~,./~ ..... J;,). When it 
does not lead to ambiguities, we might abuse the notation to denote a com- 
plex n-vector--l ike the vector made of the basis set of functions J),(z), 
k =  1,2 ..... n - -by  f(z). In such cases, the real and imaginary parts are 
fl(.v, .i,), f2(x, y)  and we may write f ( z ) =  fl(x, y ) +  if2(x, ),). 

Latin letters./~ g will be used for real 2n-vectors with components./[t~, 
gk~, k =  1, 2 ..... n, ~ =  1, 2. We use the same letter in the typefaces men- 
tioned above for related objects like f(z), (f~(x, y), f2(x, y)), j '(x, y) for the 
basis set of functions at point z considered as a complex n-vector made of 
two real n-vectors or as a real 2n-vector. 

Greek subscripts always run over the set { I, 2}, the Latin ones over 
{ 1 , 2  ..... , , }  

For a Gaussian distribution of the coefficients the joint distribution 
function of the values of the random polynomial P,,(z), Eq. (1.6), and its 
derivative P,,(z) is determined by their correlation matrix. The calculation 
of averages can be done using Wick's theorem, replacing the products of 
coefficients by their expectation value. This reduces further to a contraction 
over the Latin indices if the Gaussian process is a direct sum of normal 
ones. TM The compact notations defined in the rest of this section will help 
us with the necessary bookkeeping. 

We use bold square brackets [,~,~ ] for the contractions over the 
Greek indices and bold parentheses ( .~ ,~)  for the contractions over the 
Latin ones. With these conventions, 

,/,] = (2.3) 
" x = i  

"' As noted in the Introduction, this is ahvays possible by choosing a suitable (1.71. 
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will be the real scalar product of the 2-vectors r and ~; [r f ]  will denote 
the real n-vector with components 

2 

[r f]k = Y', r (2.4) 

obtained by contracting the direct product between the 2-vector r and 
the 2n-vector f over the Greek indices. In an analogous way, ~, g] will be 
the second-order tensor obtained by contracting over the Greek indices the 
direct product of the 2n-vectors f and g. Its components form the n x n 
matrix 

2 

g]jk = E f.i=gk~ (2.5) 
2 = 1  

g is 
In a similar way, the scalar product between the real n - vectors f and 

while 

(f, g )=  ~ fkgk (2.6) 
k = l  

~, g)~/i = ~ fk, gk/I (2.7) 
k = l  

are the elements of the 2 x 2 (real) matrix (f, g), while 

(e, f)~ = i Ckfk= (2.8) 
k = l  

are the components of a 2-vector. 
Finally, we use matrix notations like (f, g)~b for the product of the 

2 • 2 matrix (f, g) and the 2-vector ~b, 

2 

((f, g) ff)~ = ~, (f, g)~p ~/~ (2.9) 
/ / = 0  

3. AVERAGE DENSITY OF ROOTS FOR R A N D O M  
GAUSSIAN GENERALIZED MONIC  POLYNOMIALS 

In this section we consider monic holomorphic polynomials of type 
(1.6) with coefficients distributed according to a Gaussian law. As we 
remarked in the Introduction, the case of homogeneous (nonmonic) 

822/86/3-4-15 
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polynomials may be obtained by setting ~b = O. There we also noted that it 
suffices to consider only the case of iid normal Gaussian coefficients (with 
zero expectation and unit dispersion): 

E{Ck} =0,  E{ckcj} = 5k.,, j , k =  1, 2 ..... n (3.1) 

The calculation of the average density of roots, their two-point 
correlation function N, r and even higher correlation functions @,,, may 
be done in closed form since all the integrals will be Gaussian, although the 
formulas will tend to become rather cumbersome with increasing m. 

3.1. Average Density of Complex Roots 

The starting point will be the formula (1.17) for the average density of 
roots for the polynomial 

P ( z )  = (~(z) + F( z )  (3.2) 

where ~b is the deterministic (nonrandom) part and 

F(z )  = ~.  Ckfk(Z)  = (C, f ( z ) )  
k = l  

Here c is the real vector of the Gaussian coefficients, and we use the bold 
parentheses notation (2.8) introduced in the previous section. 

For the sake of clarity of the main points of the calculation, we will 
first illustrate our approach in the case of homogeneous (nonmonic) 
polynomials, i.e., 

r  

obtaining a generalization of the results derived by Shepp and 
Vanderbei c~~ in the algebraic case [ f j ( z ) = z  j - t ] .  Subsequently we will 
obtain the average density of complex roots in the general case of monic 
polynomials. 

In the homogeneous case the joint distribution function for the poly- 
nomial and its derivative P and/~ at the point z z = x + iy coincides with 
the one for F and F at the same point. Then 

-~ ----f [07, 07] ,~(0, 07) d(2}07 (3.3) 

Here we used the bold square bracket notation (2.3) for the contractions 
introduced in Section 2 to rewrite [07[2 as [07, 07]. 
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Now, ~ will be a Gaussian distribution determined by A(z), the 4 x 4 
correlation matrix of F(z) and/O(z). Its elements are the expectation values 
of products of elements of the 4-vector 

(Re(F), Im(F), Re(~'), Im(F) ) r  = (Fi ,  F2, P l , /02)r  

For example, 

,d 14(Z ) = Nz{ Re(F(z))Im(F(z))}  = }-" L,(z)~.2(z)  ~:{ ckci} 
k , ]  

Using (3.1), this reduces to 

a,4(z) = E L,(z))  fk,_(z) 
k 

We may use the bold parentheses notation (2.7) to write the 4 x 4 matrix 
A(z) as a 2 x 2 block matrix whose elements are 2 x 2 matrices 

A(~' ['(f(z), f(z))  (f(z), fC(z))) 
.-1 = ~(fC(z) ' f (z))  (.[(z), j (z))J (3.4) 

As a correlation matrix, A(z) is symmetric and nonnegative. The same 
is true for the diagonal blocks in (3.4). Since the functionsfk(z) are linearly 
independent and of real type, (1.18), A(z) will be generically nonsingular 
off the real axis. For  I m ( z ) 5 0 ,  we may then write the joint distribution 
function of F and fl" 

~(oc, 07; z) = exp - (~r, 07r) A -T(z) (35) 
(2re) 2 

Here 

~ =  and 07= 07 2 
r 2 

are two-component vectors and we use v to denote the transpose. 
For  I m ( z ) ~  0, where the rank of A is equal to four, we may introduce 

the block-Cholesky decomposition of the positive matrix A into block- 
triangular 2 x 2 factors: 

A=KTK (3.6) 
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where the upper block triangular matrix is 

K = f ( f '  f )  ,/2 
\ 0 

Here we introduced the notation 

Mezincescu e t  al. 

( j ; , . [ ) •  • j " -V  i f ) = ( ~  j ' ) - ( f , ,  f ) ( f ,  f ) - '  ( f  j") (3.8) 

with the matrix 

T• = (~ f ) ( f  f ) - I  (3.9) 

The square root of a matrix M is defined by the well-known relation 

M , / _ , = 2 ~  dt 
1 + t Z M  - I  

which is true as long as M has no eigenvalues on the interval ( - ~ ,  0]. 
For brevity's sake we also dropped the dependence on z = x + iy, which we 
will continue to do whenever this does not lead to ambiguities. 

If the matrix d is strictly positive, its diagonal block (f, f )  has the 
same property. Then, 

d-i = K - t ( K - I ) r  

where 

- ( I , . - '  (i, 
= 0 [ ( / ,  / ) l ]  - '/: (3.10) 

The matrix (~  J ' ) l  was defined above, (3.8). 
Substituting (3.5) into (3.3), we may rewrite (3.3) as 

~ - (2rc)2 - ~ [8, ((j;, j ? ) •  0~] a'2'8 (3.11) 

This Gaussian integral is readily evaluated yielding 

= x/det( f '  "f)" Tr(f, f ) .  
2re x / ~  d 

But from (3.6) and (3.7) and taking into account the block-Cholesky 
decomposition introduced above, we have 

det ,4 = det K 2 = det(f, f )  det(~ .f)• 

(f, f ) - , /2  (f, fc)) (3.7) 
�9 " 1 / 2  

[(f ,  f ) •  J 
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Thus, we get a simple formula for the average density of complex roots 
extending the Shepp and Vanderbei one ~'~ to random Gaussian 
homogeneous generalized polynomials: 

Tr(f,/) • 
-@ = (3.12) 

2n ~ f )  

Let us now return to the general case of monic polynomials, when the 
deterministic part ~ is not identically zero. The joint distribution function 
of the values of the polynomial and its derivative P and/~ coincides with 
the one for F and F shifted by their deterministic parts ~ and ~, respec- 
tively. Thus, for Im(z)#: 0, 

(3.13) 

where the function r is again given by (3.5): 

1 [ 1 
~( - r  o~ - ~) - (27r) 2 ~ exp - ~ ( _ r  o~r_ 6r) A - '  

(3.14) 

The inhomogeneous Gaussian integral (3.13) with ,~' given by (3.14) is 
calculated in a similar way to the previous one by using the block- 
Cholesky decomposition (3.7)-(3.10) and introducing a new integration 
variable 

where 

~ l = ~ - T - ~  (3.15) 

Finally, the expected density of roots in the monic case is 

@ _exp{ - �89162 (f, f ) - '  r {Tr(f, f ) •  + [~ l ,  ~x]} 
21r x/det(f, f )  

where (f, J')• and T• were defined above in (3.8) and (3.9). 

(3.16) 

3.2. Average Density  of Real Roots 

On the real axis the situation is rather different. There the imaginary 
parts of all fk and f ,  vanish due to the reality condition (1.18). The rank 
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of the matrix A is equal to 2 on the real axis, so that the above calculations 
are invalid there. 

For  small values of y = I m ( z )  the real and imaginary parts of the 
homogeneous polynomial F are 

Ft(x, y)=F(x,O)+(-9(y2), F2(x, y )= yF'(x,O)+(P(y 3) 

where F(x, 0) is real ~ and we use the prime to denote the derivative with 
respect to x. Introducing this into (1.16), i.e., the definition of ~ ,  

~(~,  0~; z) = E{6(~l - -Fl (x ,  0; o) + (9(y2)) ~(~2 -- yF'(x, 0; o) + (9(y3)) 

x ~(~ --F'(x, O; .~) + (9(y2)) ~(~2 -- yF"(x, O; o) + (fl(y3))} 

(3.17) 

and comparing the arguments of the second and third deltas, we see that 
the second one may be written as 6 ( % -  Y~t + (9(Y3)) �9 Setting the argument 
~2 = 0, this becomes 

I0"q I- t a ( y ) +  13'1-' ~ ( ~ , -  ~(y2)) 

Substituting the second term in the above sum into (3.17) would yield the 
small-ly I asymptotic behavior of the density of complex roots (3.12), which 
we will obtain a little further on in Section 3.3. 

The first term, which is zero off the real axis, generates the singular 
component of ~ ( ~ ,  0, a t ,  %; x, y), 

&,,g(c~,, 0, a,,  ~,; z) = I~,1 - '  ,~o(~,, ~,; x) 6(~2) 6(y) (3.18) 

where .~ is the density for the joint distribution function of the real values 
of F(x, 0) and F'(x, 0). 

In the Gaussian case ~0 is also a Gaussian, determined by the 2 x 2 
correlation matrix of the (real) values of F and F': 

((f(x), f(x)) (f(x), f'(x)) 
A(x) = \ ( i f (x) ,  f(x))  (f ' (x),  f ' ( x ) ) J  

(3.19) 

We use here the notations introduced in the previous section for the real 
n-vector f(x),  which has components fk~(x, 0), and the bold parentheses 
(2.6) for the contraction over the Latin indices. 

~ We remind the reader that the real and imaginary parts of a complex quantity are denoted 
by the indices 1 and 2, respectively. 
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Thus in the Gaussian case 

1 [ 1 
~o(al ,Sl ;X)= exp -- (ctt,Si)A-l(x) (3.20) 

2 r c ~  2 8, 

Substituting the singular component ~i,,g, with ~o given by (3.20), 
into (3.3) and performing the integral leads to Kac's formula ~4) for the 
average density of real roots in the homogeneous case 

go(X, Y)= 6(y) x/(f(x)'  f(x))(f'(x), f'(x)) --(f(x), f '(x)) 2 
n(f(x), f(x)) 

(3.21) 

Let us now obtain the singular component of the average density of 
roots for monic polynomials. Substituting ~i,,g, (3.18)-(3.20), shifted by the 
deterministic part into (3.3) and performing the integration yields 

A(x) { t0(x, 0), ,(:,, 
@o(X, y) = 3(y) zc(f(x), f(x)) H[w(x)] exp - 2(f(x), f(x)) J (3.22) 

where 

H(w)=exp ( -  2 ) + ~ w erf(w) (3.23) 

w(x) = / ( f ( x ) ,  f(x)) ~'(x, 0) (f(x), f'(x)) ~b(x, 0) (3.24) 
~/ det A(x) (f(x), f(x)) 

and the error function is 

erf(s) = e-,-'/2 dt 

The function H(w) is monotonically increasing. H ( 0 ) = I  and H(w)~ 
N c ~ W  as w ~ .3v 00. 

For homogeneous polynomials with noncentral Gaussian distributions 
the density of real roots was obtained by Edelman and Kostlan. ~6) Taking 
a singular limit of the covariance matrix in Section 5 of ref. 6 will also yield 
(3.22). 

Thus, in the Gaussian case the average density of zeros has a regular 
component given by (3.16) in terms of the 2 • 2 matrices (f, f ) ,  (f, f ) ,  and 
(f, f ) .  For the real type, (1.18), polynomials considered in this paper the 
average density of roots has also a singular component, localized on the 
real line, given by the generalized Kac-type formula (3.22). 
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3.3. Asymptotic Behavior of the Average Density of 
Complex Roots near the Real Axis 

Let us now study the asymptotic behavior of the density of complex 
roots near the real axis. For small y -- Im(z), the smallest eigenvalue of the 
matrix 

( ( f ' f )  y(f, f ' )  "~ 
(f, f )  ~ \y(f ,  f,) y2(f,, f , ) ]  

goes to zero as [(f , ,  f,) _ (f, f,)2/(f, f ) ]  y2. The argument of the expo- 
nential in the density of complex roots (3.16) goes to a finite limit, while 
the other factor in the numerator is (9(y2). Thus, the average density of 
complex roots goes to zero as O([y[): 

[ 1 # ~ ( x , o ) h ]  
]y[ exp - ~ (~b(x, O) ~'(x, 0)) A(x) \~'(x, O)/J 

~(x ,  y ) =  
2~ x/det  A(x) 

x {[(Of,  Of)]  + [O~b, O~b]} + O(ly31) (3.25) 

where the 2 x 2 matrix A(x) was defined above in (3.19) and the linear 
operator O is defined by 

Oh(x) 
=h"  [(f '  f ) ( f"  f " ) -  (f' f ' )(f '  f ' ) ]  h ' +  [(f ' ,  f ')(f,  f") - ( f ,  f ' ) (f ' ,  f")]  h 

det A 

(3.26) 

We omitted all the arguments (x) of the functions appearing in the right- 
hand side of (3.26). 

Thus, the real axis attracts the roots in its vicinity to the singular com- 
ponent located on it, depleting the density of roots in its neighborhood. 

3.4. High- and Low-Disorder Limits 

With our definition of the monic random polynomial (1.6) we may 
always consider that the random part of the polynomial [ the coefficients ck 
in (1.6)] has expectation value equal to zero. Let us rescale the deter- 
ministic part ~b of the polynomial to F~b, introducing a real parameter 
F>~ 0. The random polynomial is now 

P(z) = F~b(z) + F(z) (3.27) 
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The form (3.27) allows us to interpolate from the monic to the 
homogeneous case. In the Gaussian case this is equivalent to considering 
the coefficients ck of the random polynomial as realizations of a Gaussian 
process with zero average and dispersion 

6 = F -  ' (3.28) 

instead of (3.1). 
For  small values of F ~ 0  (the large-randomness limit, ~ ~ )  the 

average density of roots 9 ,  (3.16), approaches the density for homogeneous 
polynomials, (3.12). In the large-/" limit, equivalent to small randomness, 
6 ~ 0 in Eq. (3.28), the average density of roots concentrates near the roots 
of the deterministic part ~b(z) and decays exponentially away from them. 
Indeed, inspection of (3.16) shows that at fixed z = x + 0 ~ ,  which is not a 
zero of ~b, the average density of roots ~ goes to zero exponentially when 
/ ' - - .co.  

Let now Zo = Xo + iyo be a complex zero of ~b having multiplicity k ~> 1: 

~(z )  = c(z  - Zo) ~- + (9( ( z  - Zo) k + ') (3.29) 

and assume that the matrix A(zo)  is nonsingular. Then, to leading order in 
F ~  + oo and for small values of p = [Z-Zol the average density of roots 
is 

~ (  x ,  y )  ..~ Ak2F2p  "-k- 2e- B(o.)r-'p '~ (3.30) 

where 

C 2 

A - (3.31) 
2 ~ x / 2 , 2 :  

B(Oo) = ~ c212~ + 22 + 12, - 221 cos(2k0o +Zo)]  (3.32) 

O o = a r g ( z - - z o ) ,  

2(f, f )  ,2 
Zo = arctan (3.33) 

(f,  f ) , ,  -- ( f  f)22 

and 2t, )l 2 are the (positive) eigenvalues of the 2 x 2 matrix (f,  f ) .  
Now, it is readily seen that for F ~  co, (3.30) goes to k f Z ( z - z o )  in 

the sense of distributions. For  large but finite values of F the average 
density of roots is a Gaussian centered at Zo for k - -  1. 
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For  k > l  if the eigenvalues of  ( f , f )  are equal,  2 ~ = 2 2 ,  then the 
surface S = @ ( x ,  y )  has an annular  m a x i m u m  for p 2 ~ - - - - ( l - - k - ~ ) / B F  2. If  
2~ :~ 22, the annular  m a x i m u m  splits into 2k individual m a x i m a  located at 
2kOo + Xo = ( 2 M  + 1 ) g, M = 0,..., 2k - 1, and pZk = ( 1 - k - J )~Brain F 2, where 
B,, i ,  = C22mi, = minoB(O)  is the minimal  value of  (3.32). 

4. A S Y M P T O T I C  DENSITY OF ROOTS FOR M O N I C  
ALGEBRAIC P O L Y N O M I A L S  

In this section we investigate the average density of  roots  for algebraic 
monic  polynomials ,  

L - i (4.1) P,,(z) = z " + O  ckz  k -  
k = l  

in the large-n limit. Here  the pa rame te r  6 = F -  t ~> 0 is the dispersion of  the 
original Gauss ian  distr ibution which was t ransformed to the normal  one, 
Eq. (3.1), as ment ioned  in the preceding section. 

The roots  of  the po lynomia l  (4.1) coincide with the roots  of  

F P , , ( z ) = F z " +  L Ck Zk-I (4.2) 
k = l  

so that  we m a y  use the rescaled ~b, (3.27), as in the preceding section. The  
la rge-F  ( low-disorder)  asympto t ic  obta ined  there near  complex  roots  of  the 
determinist ic par t  ~b cannot  be used straightforwardly,  since in our  case ~b 
has a highly degenerate  real zero at the origin. 

The  calculation of  the 2 x 2 matr ices (f ,  f ) ,  ( f , )?) ,  and ( f , / )  in this 
case is presented in some detail in the Appendix.  There  we show that  the 
matr ix  elements may  be expressed in terms of  the functions 

C,,(r 2, 20) = I - r  2 cos 2 0 - r  2'' cos 2 n O + r Z " + 2 c o s ( 2 n - 2 )  0 (4.3) 
1 - 2r%os 20 + r 4 

r 2 sin 2 0 -  I "2n sin 2nO + r 2'' + 2 sin(2n - 2 )  0 
S,,(r 2, 20) = 1 - -  21.2 COS 20 + r 4 (4.4) 

and their derivatives with respect to r. Here  

Z = X -b iy = re i~ 
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The matrix (f, f )  is thus given by 

2 "~ 9 \ 1 (C,,(r, O) + C,,(r-, 2cp) S,,(r-, 2r 
(f '  f )  = 2 k, S,,(r 2, 2r C,,(r 2, 0) - C,,(r 2, 2~p)) (4.5) 

Its eigenvalues are C,(r 2, 0) _+ [C] ( r  2, 20) +S](r  2, 20)] ~/2. The smallest is 
positive for all 0 such that sin 0 # 0, as shown in the Appendix. 

In the Appendix we express the matrix elements of ( f  f )  and (j; f )  in 
terms of derivatives of the matrix (f, f )  with respect to i'. We may now 
rewrite Eqs. (A10)-(Al l )  in matrix form using the orthogonal matrix 

U(0) = (-sin0C~ cosSin00) (4.6) 

�9 1 O(f, f )  (4.7) 
(f,  f )  =-~ U(O) 0,----- 7 -  

] a [ r a(j; f ) ]  (J;' f )  = 4rr U(O) ~r ~ 3  UT(O) (4.8) 

Here U T is the transpose of U. 
For examining the behavior of the density of complex roots (3.16) in 

the vicinity of the unit circle, let us introduce a new, logarithmically 
rescaled variable 

e ~ = i .2'' (4.9) 

Inspection of (3.16) and comparison with (4.7), (4.8), (3.8), (3.9), and 
(3.15) shows us that we need to estimate the matrix (f, f )  and its inverse, 
the matrix 

1 O ( f / )  (f, f )_ ,  Ur(O) Y l = 2 

and the second derivative with respect to r of the function C,,(r 2, 0). The 
functions C,,(r 2, 2~o) and S,,(r 2, 2~o), (4.3) and (4.4), have rapid oscillations 
with 0. 

Let us study the quotient 

C,,(r 2, 2cp) 
O - C,,(r -~, 0) 

(1 -1"2)(1 - I  .2 cos 2 0 - r  2" cos 2 n 0 + r  2"+2 c o s ( 2 n -  2) 0) 

( 1 -- r2")( 1 - 21.2 cos 20 + r 4) 
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for  1{1 ,~n. T h e  a b s o l u t e  va lue  o f  the  s u m  o f  t e r m s  p r o p o r t i o n a l  to  r 2" in 
the  n u m e r a t o r ,  wh ich  are  r ap id ly  osci l la t ing wi th  0, does  n o t  exceed  
r2"( 1 - 2r  2 cos  20 + r 4) 1/2. N o t i n g  t ha t  

we  o b t a i n  

1 - 2r  2 cos  28 + r 4 = ( 1 - -  r2) '- + (2r  sin 0) 2 

l - r 2  ( I 1 ) ~ 

I Q I < 2r [sin 81 ~ + r -  2. _-----~ "~ ~nn I sin O I co th  

whe re  we used  the  o b v i o u s  inequal i t ies  2ab < a 2 + b 2 a n d  b < (a  2 + b2) 1/2 to  
e s t ima te  the  0 - d e p e n d e n t  te rms .  A s imi la r  e s t ima t e  can  be o b t a i n e d  for  the  
quo t i en t  S,,(r ~-, 2cp)/C,,(r 2, 0). 

Thus ,  for  

r = 2 n  I~n  O[ co th  .~ 1 (4.10) 

n=100, N = 0 

003  
7 

~0.01 

6 

-6 " f, 

A 

Fig. 1. The renormalized density of complex roots, n-'-D(-), for the homogeneous Gaussian 
polynomial cl-'9~ + c__98 + ... + cl0o ' n = 100, as a lhnction of ~ = 2n In I=1 and 0 = arg(-}. 
(A} Exact, Eq. (3.12J; {B} asymptotic formula, Eq. (4.12); (CI contour plots: full line, exact; 
dotted line, asymptotic. 
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n=lOO, N =  0 

0.03 

0.02 

o.01 

~ o 

-6 " f, 
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' ~ " , , , , , 

-2 

-4 

-6 

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.I 
Ol~r 

c 

Fig. I (continued) 
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the matrix (f, f )  is asymptotically proportional to the unit one times 
C,,(r'-, 0). Substituting the I~1 ,~n asymptotic behavior of C,,(r 2, 0), (A20), 
we obtain that (f, f )  is equal to n times a universal function of ~, which 
does not depend on 0 and n: 

17 e : - -  1 
( f ,  f ) -  - -  [ l + 0 ( r ) ]  (4.11) 

2 

Noting that (4.10) implies ~ n ,  we see that we may use (4.11) also for 
estimating the derivatives of (f, f ) .  

Let us first look at the homogeneous ease, P , , ( z ) = ~ 2 t o c k z  ' ' -k ,  
corresponding to / ' = 0  and recover the result obtained by Shepp and 
Vanderbei. ~~ Substituting (4.11) into (4.7), (4.8), we obtain after a little 
algebra on (3.12) 

1) 
~ ( e  ~/~-'', O) ~ - (4.12) 

n d~ e r  

Thus, for r ~  1, (4.10), the expected density of complex roots for 
homogeneous ( F = 0 )  Gaussian polynomials is asymptotically equal to n-" 

n=10, N=100 

0.2 i "~ 

0.15 /" 

/ . / '  ~ 0 . 1  

0.050 

0 
6 

Fig. 2. Renormalized density of complex roots for the polynomial N ~ 2_,~+ c~ z'~+ ... + c.~, 
n = 10, and N =  F-' = 100, as function of r and 0, 
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0 
Fig. 3. Average number of roots in angular sectors for n = 30 and N =  1024. Full line, 
histogram of the averages for 1000 polynomials; dashed line, angular density of roots, 
~(~ th' rD(r, (1), obtained by numerical integration of Eq. (3.16). 

times a simple universal symmetric function of ~. For  large values of 1~1 ~ n 
the density has inverse power behavior, N ~ ( -2 .  

In Figure 1 we plot the renormalized average density of complex 
roots, n-2D, for homogeneous real Gaussian polynomials of degree 99 as 
a function of ~ = 2n In Izl and 0 = arg(z). We see that at n = I00 the concor- 
dance with the asymptotic formula (4.12) is good, except in the vicinity of 
the real axis where the condition (4.10) is invalid. 

Performing the same substitutions on (3.16) and noting that for 
= F - "  the 2-vector ~ satisfies 

=n_ U(O) 
I" 

we obtain after a little algebra a simple asymptotic formula, valid for t ,~ 1, 
for the average density of complex roots N of monic algebraic polynomials: 

1 ) ( )t ~(e ~/2'', 8)= ~ d{ e r I exp 17 1 -- -r (4.13) 
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In the monic case the expected density of roots is also asymptotically 
equal to n 2 times a universal function of ~ and F2/n. For nonzero values 
of F/v/-n the large -I l l  ~ n  asymptotic behavior of (4.13) is exponential 
decay for large positive ~ and remains inverse power for large negative 
values of (. This asymmetry becomes rather pronounced in the case of 
large values of the parameter F'-/n, which was investigated numerically in 
ref. 18. 

Let us estimate n-~ou t (R)  the fraction of the expected number of 
roots outside a disk of radius R centered at z = 0 .  For large n and 
Iln RI ~ 2n the total number of real roots is O(log n) and since the sectors 
of angle d)(n/n) near the real axis contain a number of roots comparable to 
the error of the asymptotic relation (4.13), we may also use it there: 

,A/'ou,(R ) = d~ e r dO @(e r O) 
Cn 

Here ~n = - l n  R/(2n) and we may exploit the exponential decay of ~ for 
large ~ and replace e e/'' by 1 under the integral if [~n[~ n. 

Fig. 4. 

n=lO0, N=IO00 

/ 
. J  

0.1 V ../ .k "% 

~" 0.05 / / "  ~ 

A 

Renormalized density of roots for N = F 2 =  10n: (A) n =  100, exact; (B) n=200 ,  
exact; (C) asymptotic formula 14.13) for N/n= 10. 
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Fig. 4 (continued) 
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Fig. 5. 

0.0t 

e ~  

0.005 

0 

n=30, N=1000 

~, I l l  " /  

, r  

/ J i / 

/ .I / /  
/ /  

Qo/ 

Detail of the asymptotic behavior of the expected density of roots near the real axis 
for n =  30 and N =  1000. 

The fraction of roots outside a disk of radius R is thus asymptotically 
equal to 

1 ~t~,ut(R)~ (4.14) 
n ~nnln(R) R 2 " - I  exp I_R_2,,j 

For  R ~ 0 this goes to n. 
In Fig. 2 we plot the (re)normalized density of roots for n = 10 and 

N =  F 2-- 100. It has nine sharp peaks in each of the half-planes Im(z) -~ 0. 
Our analysis in Section 3.4 predicts the splitting of a complex n-times 
degenerate zero of the deterministic part  into 2n maxima. In the present 
case we have only 2 n - 2  peaks because the zero of the deterministic part  
is real and the other two peaks of the distribution are on the singular com- 
ponent. An interesting feature of this splitting is the fact that there are twice 
as many peaks as there are roots. Thus, on a typical realization of the 
random process we expect to find the n roots of the polynomial located 
near half of the positions of the maxima. 

At n = 30 and N =  1024 there is still some oscillation in the expected 
number of roots in an angular sector, as can be seen in Fig. 3. For  larger 
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values of  n, the density of  complex  roots  approaches  the 0-independent  
asymptot ic  form (4.13). In Fig. 4 this convergence is shown for 
2n/5 < O< n/2 at N =  F 2 =  10n. The n u m b e r  of  ex t rema increases with n, 
while their values become closer. The  first several m a x i m a  near  the real axis 
have a larger ampl i tude  than  those in the domain  of  universality. Since 
these are at a distance ~ n  -~ f rom the real axis, the l inea r -wi th - l J (z ) l  fall 
to zero of  the density of  roots  may  become ra ther  steep as can be seen in 
Fig. 5. 

APPENDIX.  MATRIX  ELEMENTS--ALGEBRAIC CASE 

The density of  complex  roots  is given by Eq. (3.16) in terms of the 
2 x 2 matr ices  (f ,  f ) ,  ( f ,  f ) ,  and (j;, J~) defined in Section 2. Let us calculate 
them explicitly in the case when the polynomials  are algebraic, i.e., when 
the basis functions are given by 

f k ( Z ) = Z  k - ' ,  k = l  ..... n (A1) 

Taking  z = re i~ we find that  the componen t s  of  the 2n-vectors f and f are 

f k l = r *  ICOS(k__l )0  

fk2 = rk - ~ sin(k -- 1 ) 0 

f~., = (k - 1 ) r k - 2 cos(k - 2) 0 

J~k2 = ( k  - -  1 ) r k - 2 s i n ( k  - 2 )  0 

(A2) 

(A3) 

Let us start  with the 2 x 2 real symmetr ic  matr ix  (f ,  f ) :  

( f ,  f ) , ,  

n -  1 n -  I 

= ~ r - 'kcos 2 k 0 = {  ~ r 2 k ( l + c o s 2 k 0 )  
k = 0  k = 0  

= I [ C , , ( r  2, O)-I- C , , ( r  2, 2 ( 0 ) ]  (A4) 

Here we defined the function C,,(x, Z) as the real par t  of  the sum 

n I 

~ k  e~x = C,,( x, X) + iS,,( x, Z) 
k = 0 

1 -- x cos Z - x" cos nx + x" + i cos(n - 1 ) X 
C,,(x, x ) -  

1 - -  2x cos X + x2 

x sin X - x" sin n Z + x"  + i sin(n - 1 ) Z 
S,,(x,x)- 

(AS) 

(A6) 

(A7) 
1 - 2 x c o s z + x  2 
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In a similar way, the other elements of the symmetric matrix (f, f )  are 
given by 

[ 9 
( f  f ) ,~  = _~S,,(r-, 2cp) 

(f, f)22 = �89 C,,( r2, 0) - -  Cn(r 2, 2q~)] 
(A8) 

where the function S,,(x,z) is defined in (A7). The determinant of the 
matrix (f, f )  is 

d e t ( f , f )  �88 ) " ' 20) " " = ~ " -C;,(r- ,  -$7,(r- ,20) ] 

1 (/1--r2"'~ 2 [  1-2rZ"cos2nO+ r4''] 
(A9) / t, ) 7-_- j 

It is readily seen that the determinant is greater than zero if sin 0 ~ 0, i.e., 
off  the real axis. 

The sums appearing in the definitions of (f, f )  and (f, f )  are similar. 
The factors kand k 2 may be dealt with using the relation dx~/dx= kx  k-  1 
Thus, the elements of the matrices (f, f )  and ( f  f )  can be expressed in 
terms of derivatives with respect to the first argument of the functions C,, 
and S,, defined by (A6) and (A7). We have 

n - -  I 

(f,, f ) , ,  = ~ kr 2k-' c o s k O c o s ( k -  1) 0 
k = 0  

n - -  I 

= ~, kr 2k - t[cos 0 cos 2 kO + sin 0 sin kO cos kO] 
k = O  

I 0  
2 Or 

0 
( f  f ) , 2 = ~  r 

[cos 0(f, f ) , ,  + sin O(f f)2,  ] 

[cos 0(f, f ) ,2  + sin O(f f)22] 

(Al0) 

1 8  
( f  f)2,  = ~  ~ [cos O(f f ) 2 , - s i n  O(f  f ) , ,  ] 

1 0  
(J; f)22 = 2 ~ r  [cos O(f f)22 - sin O(f f ) ,~ ]  
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n - -  I 

( j ; / ) , ,  = y, k2re*-e cos2Ck- l )0  
k = O  

n - -  I 

= ~ k2r 2k-e 
k = O  

x [cos  z 0 cos z kO + 2 sin 0 cos 0 cos kO sin kO + sin 2 0 sin e kO] 

1 0 0 
= ~  ~ r ~ r  [ cosZ 0(f ,  f )  l i + 2 sin 0 cos 0(f ,  f )  l 2 + sin 2 0(f ,  f ) z e  ] 

�9 1 0 0 
(f ,  f ) , ,  - ~ ~ r ~ [ cos z 0 - sin e 0)(f ,  f ) , z  

+ sin 0 cos 0( (f ,  f )  z2 - (f ,  f )  ~ ) ] (A 11 ) 

1 cO cO 
( f  f)_,2 - 4 r  0r r ~ r  [cos-'  0(f ,  f),_e 

-- sin 0 cos 0((f ,  f )  ~z + sine O(f, f )  l ~ ) ] (A 12) 

After expressing all the relevant matr ix  elements in terms of the 
functions C,, and S,,, let us now consider their a sympto t ic  behavior  when 
n >> 1. The  sum in Eq. (A5) and its derivatives,with respect to x are t run-  
cated power  series in x with power  bounded  coefficients. Their  radius of  
convergence is 1. F o r  x < 1 the leading te rm of  its large-n asymptot ic  
expansion is given by the n ~  c~ limit of  Eq. (A5), yielding an n-inde- 
pendent  result with exponent ia l ly  small corrections: 

1 - x c o s z  
C,,(x, Z) "~ , + (.O(x") (A13) 

1 - 2x cos Z + x-  

x sin g 
S,,(x, X) ~ 1 - 2x cos ;Z + x'- + O(x") (A14) 

If  x > 1 the series in the sum Eq. (A5) diverges as n ~ ~ .  The  leading 
terms for C,, and S,, are now exponent ia l ly  large in absolute  value and 
rapidly oscillating functions of  Z- The  correct ions ares again ra ther  small: 

c,,( x, z )  = x" { x cos( _- 1 ) j - -  co__2.z 
L 1 - 2x cos Z + x2 

S,,(x, 7.) ,~ x" I x sin(n - 1 ) x - sin n Z 

L . . . .  cos Z + x-  

+ 6 (x -" ) ]  (A15) 

m- (_9(x-")] (A16) 



704 Mezincescu et  al. 

Thus, in the large-n limit the asymptotic behavior of the functions C,, 
and S,, changes dramatically in a narrow annulus of width 60(n-~) near the 
unit circle, crossing over from the behavior (A13) to (A15) [respectively 
from Eq. (A14) to Eq. (A16)]. 

For investigating the behavior in the crossover region, let us go to a 
logarithmic scale for the variable x: 

x = exp ~/n (A 17) 

For I~l < n2' the leading asymptotic terms are 

sin(n - 1 / 2 )  2' ~] C"(er 1-t- ~n(X/-~ e" J -I- (9 G~Z) (A18, 

1 2' S,,(e ~'', 2') ~ ~ [ cot ~ - cos(n - 1/2) 2' 
~n~/--~ eel + ~~ (~Z) (A19, 

Inspection of Eqs. (A18)-(A19) shows that the corrections are small 
outside a neighborhood of the point x = 1, 2' = 0. For 2' = 0 and I~1 < n, the 
leading term is ~ 2 

e r  1 
C,,(e ~/'', 0) m n - - ~  + (9( 1 ) (A20) 

The asymptotic expansions given by Eqs.(A13)-(A16) and 
(A18)-(A20) may be now used to obtain the large-n asymptotic behavior 
of the matrices (f, f ) ,  (f, j ') and (f, f )  in the domains Iz"l ,~ 1, Iz"l ~> 1, 
and the thin annulus which separates them. 

A C K N O W L E D G M E N T S  

G.A.M., D.B., and J.D.F. acknowledge the support of the European 
Science Foundation for participation at the Como Workshop on Classical 
Mechanics Methods in Quantum Mechanics; G.A.M. and G.M. thank 
Alfred Msezane and Carlos Handy for hospitality at CTSPS, Clark Atlanta 
University, where part of this work was done. J.D.F. and G.M. acknowl- 
edge support from the Programme Galilee de collaboration scientifique 
France-Italie. 

t., We will not write here the bulkier expressions which are valid for [~l ,~n without restric- 
tions on Z. 
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